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We investigate the so-called nonsmooth bilevel semi-infinite programming problem when the in-
volved functions are nonconvex. This type of problems consists of an infinite number of constraints
with arbitrary index sets. To establish the optimality conditions, we rewrite upper estimates of
three recently developed subdifferentials of the value functions using two new qualification con-
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as well.
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1. Introduction

We consider nonsmooth bilevel semi-infinite programs with an arbitrary number of
inequalities (possibly infinite) at the lower level our treatment makes use of the most
recent variational tools. In particular, we consider certain generalized differentiation
properties of the value function of the lower level problem. It is worth mentioning
that the value function is currently recognized among the most significant approaches
for parametric optimization, and proves to be very useful in developing optimality
conditions for several problems of optimization, control theory and equilibria, etc;
see [14, 19].
More precisely, we study the following class of bilevel semi-infinite programming
problems

min
x,y

F (x, y) s.t. y ∈ S (x) , (1)

where S (x) is a parameter-dependent set of optimal solutions to the following lower-
level problem

min
y

f (x, y) s.t. gt (x, y) ≤ 0 ∀t ∈ T. (2)
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The objectives are F, f : Rn × Rm → R and the constraints are given in terms of
gt : Rn × Rm → R, t ∈ T , where T can be any nonempty index set which is not
necessarily finite. Furthermore, we do not assume any of the previous functions to
be locally Lipschitz. Note that we can readily insert into the upper-level problem
(1) any extra convex geometric or functional constraints but we prefer to omit them
for the sake of simplicity.
There have been many published works in the last two decades about bilevel opti-
mization problems; see the two monographs [1, 4] for pointers to a vast literature
as well as the survey articles [5, 20]. The majority of these works were concerned
with necessary optimality conditions. In [21, 22], Ye and Zhu employed the optimal
value approach to convert the bilevel program into a scalar-objective optimization
problem, and then derived necessary optimality conditions. A similar transforma-
tion principle combined with a scalarization technique was used in [10, 11] in order
to obtain necessary optimality conditions in the case of a semivectorial bilevel pro-
gram. In [24], Zemkoho studied the so-called ill-posed bilevel program, in which
given some upper-level parameters, the problem admits multiple lower-level solu-
tions. The author established the equivalence between this problem and a certain
set-valued optimization problem, which was used to develop optimality conditions.
In [7], Dempe et al. gave exact and fuzzy/approximate optimality conditions for
bilevel programming by applying the exact as well as the approximate extremal
principles introduced by Mordukhovich [13, 14].
However, to the best of our knowledge, there are a very few papers that have dis-
cussed optimality conditions for the case of bilevel semi-infinite programs. We note
that introducing an infinite number of constraints into a bilevel problem were re-
cently studied in [9], where the objectives were stated in terms of the difference of
two convex functions.
In this work, we treat the nonconvex case of bilevel semi-infinite programming. Our
goal is to rewrite upper estimates of three recent subdifferentials of value functions
in the semi-infinite program (2) using generalized differentiation and advanced tools
of variational analysis. Furthermore, the obtained results for the value functions
will be employed to study the nonsmooth optimization problems (1)-(2) when the
involved functions are nonconvex. We also aim to establish new first-order necessary
optimality conditions for (1) by exploiting the same technique used in [7, 6].
The paper is structured as follows: Notions and properties from variational analysis
that we need are first stated in the next section. Section 3 is devoted to trans-
form our bilevel semi-infinite optimization problem into a single-level optimization
problem. In Section 4, we derive upper estimates on three subdifferentials of value
functions in the semi-infinite program (2). In Sections 5 and 6, we derive exact
and fuzzy necessary optimality conditions by considering cases where all the func-
tions involved are Lipschitz continuous. Finally, we illustrate our main result by
providing an example.

2. Preliminaries
We employ the same tools of generalized derivatives and variational analysis as
in [14]. Let Θ be a set-valued mapping from Rn to Rm. Recall that the domain and
graph of Θ are given by

dom Θ := {z ∈ Rn : Θ (z) 6= ∅}, gph Θ := {(z1, z2) ∈ Rn × Rm : z2 ∈ Θ(z1)} .
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Let S be a subset of Rn. The indicator function δS of S and the support function
σS of S are defined respectively by

δS(x) :=

{
0, if x ∈ S

∞, otherwise.

and σS (x
∗) := sup

x∈S
〈x∗, x〉 for each x∗ ∈ Rn.

The Painlevé-Kuratowski outer/upper limit of Θ : Rn ⇒ Rm at a point z is

Limsupz→z Θ(z) := {τ ∈ Rm : ∃zk → z, τk → τ with τk ∈ Θ(zk) as k → ∞} . (3)

Given z ∈ Ξ with Ξ is a subset of Rn, the basic/limiting/Mordukhovich normal cone
to Ξ at z is

N (z; Ξ) := Limsupz→z N̂ (z; Ξ) ,

where N̂ (z; Ξ) denotes the prenormal/Fréchet normal cone to Ξ at z:

N̂ (z; Ξ) :=

{
z̃ ∈ Rn : lim sup

z→z(z∈Ξ)

〈z̃, z − z〉
‖ z − z ‖

≤ 0

}
.

The Mordukhovich normal coderivative D∗Θ(z1, z2) : Rm ⇒ Rn of Θ at the point
(z1, z2) ∈ gph Θ can be defined as

D∗Θ(z1, z2) (z̃2) := {z̃1 ∈ Rn : (z̃1,−z̃2) ∈ N ((z1, z2) ; gph Θ)} for all z̃2 ∈ Rm.

The Fréchet coderivative of Θ at (z1, z2) ∈ gph Θ is defined for all z̃2 ∈ Rm by

D̂∗Θ(z1, z2) (z̃2) :=
{
z̃1 ∈ Rn : (z̃1,−z̃2) ∈ N̂ ((z1, z2) ; gph Θ)

}
.

We can now introduce the Fréchet/viscosity (lower) subdifferential of the function
Φ : Rn → R = (−∞; +∞] at a point z of its domain

∂̂Φ(z̄) :=

{
z̃ ∈ Rn | lim inf

z→z̄

Φ(z)− Φ(z̄)− 〈z̃, z − z̄〉
‖z − z̄‖

≥ 0

}
. (4)

Thus one can define the regular upper subdifferential (or superdifferential) of Φ at z

∂̂+Φ (z) := −∂̂ (−Φ) (z̄).

We have the following striking difference rule for (lower) Fréchet subgradients [17].
If Φ1,Φ2 : Rn → R are finite at z, then

∂̂ (Φ1 − Φ2) (z) ⊂ ∂̂Φ1(z)− ∂̂Φ2(z), (5)

providing ∂̂Φ2(z) 6= ∅.
The basic/limiting/Mordukhovich (lower) subdifferential of Φ at z can be defined
using the outer limit (3) of the regular subgradients (4) as

∂Φ (z) := Limsupz→z ∂̂Φ (z) .

Note that if Φ is convex, then ∂Φ(z) will be the same as the classical subdifferential

∂Φ(z) := {x̃ ∈ Rn : Φ (z)− Φ (z) ≥ 〈x̃, z − z〉 , ∀ z ∈ Rn}.
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Moreover, in this case the Young’s equality holds (cf. [23, Theorem 2.4.2(iii)]):

Φ(z) + Φ∗(z∗) = 〈z∗, z〉 if and only if z∗ ∈ ∂Φ(z), (6)

where Φ∗ is the conjugate function of Φ.
Note also that if Φ is locally Lipschitz continuous, then ∂Φ(z) is nonempty and
compact, and moreover, the Clarke subdifferential ∂CΦ(z) of Φ at z is its convex
hull, that is

∂CΦ(z) := co ∂Φ(z),
In what follows, the following important property of the convex hull involving locally
Lipschitz functions will be needed:

co ∂ (−Φ) (z) := −co ∂Φ(z). (7)

Now, we define im ∂Φ := {y∗ ∈ Rn : y∗ ∈ ∂Φ(z) for some z ∈ Rn} and

dom ∂Φ := {z ∈ Rn : ∂Φ(z) 6= ∅}.

The next definitions are extremely useful for our investigation.

Definition 2.1. [14] Suppose Ξ1 and Ξ2 are two nonempty closed sets in Rn. The
set system (Ξ1,Ξ2) is said to have z ∈ Ξ1 ∩Ξ2 as a local extremal point if there exist
two sequences {a1k} and {a2k} of Rn, and some neighborhood V of z with a1k → 0
and a2k → 0 as k → ∞ and(

Ξ1 − a1k
)
∩
(
Ξ2 − a2k

)
∩ V = ∅ for all large k.

In this case {Ξ1,Ξ2, x} is said to be an extremal system in Rn.
Recall that by z being locally extremal to Ξ1 and Ξ2, we mean both two sets can be
locally pushed apart by a small perturbation (translation) of even one of them.

Definition 2.2. [14] We say that an extremal system {Ξ1,Ξ2, z} in Rn realizes the
approximate extremal principle if for each ϵ > 0 there are z1 ∈ Ξ1 ∩ (z + ϵBRn),
z2 ∈ Ξ2 ∩ (z + ϵBRn) and z̃ ∈ Rn with ‖ z̃ ‖= 1 such that

z̃ ∈
(
N̂ (z1; Ξ1) + ϵBRn

)
∩
(
− N̂ (z2; Ξ2) + ϵBRn

)
.

We finally some useful definitions and properties of set-valued mappings.

Definition 2.3. Consider (x̄, ȳ) ∈ gph Θ. We say that Θ is
• inner semicompact at x̄ if for each sequence xk → x̄ with Θ(xk) 6= ∅ for each

k, there exists a sequence yk ∈ Θ(xk) that admits a convergent subsequence.
• inner semicontinuous at (x̄, ȳ) if for each sequence xk → x̄ there exists a

sequence (yk)k with yk ∈ Θ(xk) for all k and yk → ȳ.

Remark 2.4. (i) Θ is inner semicompact at z̄ if it is uniformly bounded and
takes nonempty values around z̄, i.e. there is a neighborhood V of z̄ and a
bounded set Ξ ⊂ Rm such that ∅ 6= Θ(z) ⊂ Ξ, for each z ∈ V .

(ii) Θ is inner semicontinuous at (z1, z2) in the case where Θ is closed-graph and
inner semicompact at z1 with Θ(z1) = {z2}.
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Now, some amendments are made to the definition of both inner semicontinuity and
inner semicompactness so that to make them more appropriate to study marginal
functions.
Definition 2.5. Given a function µ : Rn → R, we say that the mapping Θ is
• µ-inner semicontinuous at (x̄, ȳ) ∈ gph Θ if for any sequences xk

µ→ x̄ there is
a sequence yk ∈ Θ(xk) that admits a convergent subsequence to y.

• µ-inner semicompact at x̄ if for any sequence xk
µ→ x̄ there exists a sequence

yk ∈ Θ(xk) that admits a convergent subsequence.

Here, xk
µ→ x̄ means that xk → x̄ with µ (xk) → µ (x).

3. The problem and its reformulation

Hereafter, we are mainly concerned by the bilevel semi-infinite programming problem
(1) involving functions that are assumed to be locally Lipschitz. By employing the
lower-level value function approach together with a suitable “partial calmness” qual-
ification assumption, we can equivalently reformulate the bilevel problem as a one
level semi-infinite optimization problem. To proceed, consider the following spaces:

RT = {υ = (υt)t∈T | υt ∈ R for each t ∈ T},

R̃T = {υ ∈ RT | υt 6= 0 for finitely many t ∈ T},

R̃T
+ = {υ ∈ R̃T | υt ≥ 0 for each t ∈ T}. (8)

Using the following notation supp υ := {t ∈ T | υt 6= 0}, one has

∀µ ∈ RT , ∀υ ∈ R̃T : υµ :=
∑
t∈T

υtµt =
∑

t∈supp υ

υtµt.

From now on, we will use the following constructions related to the problems (1)-(2).
• The set-valued perturbed constraint mapping G : Rn ⇒ Rm

G (z1) := {z2 ∈ Rm | gt (z1, z2) ≤ 0 for each t ∈ T}.

• The set of active constraints
T (z1, z2) :=

{
t ∈ T | gt (z1, z2) = 0

}
. (9)

• The set of active constraint multipliers

Υ(z1, z2) :=
{
υ ∈ R̃T

+ | υtgt (z1, z2) = 0 , ∀ t ∈ supp υ
}
. (10)

• The value function of the lower level problem (2)

V (z1) := inf{f (z1, z2) | y ∈ G (z1)}. (11)

Applying the value function approach, we reformulate the bilevel problem (1) in its
globally equivalent one level problem:{

min
x,y

F (x, y)

f (x, y)− V (x) ≤ 0, gt (x, y) ≤ 0, ∀ t ∈ T.
(12)
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Next, we consider the partial calmness condition introduced in [21] to reduce the
bilevel problem to a one-level optimization problem with infinite constraints. Com-
bined with the optimal value approach, this partial calmness has been broadly inves-
tigated in the last years in the context of classical optimistic bilevel programs. Let
us take up the perturbed form of (12) linearly parameterized by a real number p:{

min
x,y

F (x, y)

f (x, y)− V (x) + p = 0, gt (x, y) ≤ 0, for all t ∈ T.
(13)

Definition 3.1. [21]Assume that u = (x, y) is a feasible point of (1). The unper-
turbed problem (1) is said to be partially calm at u if there exist a constant ρ > 0
and a neighborhood U ⊂ Rn × Rm × R of (x, y, 0) verifying

F (x, y)− F (x, y) + ρ | p |≥ 0 ∀ (x, y, p) ∈ U feasible to (13) . (14)

Under the partial calmness condition, the following lemma gives an exact penaliza-
tion of the initial bilevel semi-infinite program.
Lemma 3.2. Let u = (x, y) be an optimal solution of (1). Suppose that (1) is
partially calm at u and the upper-level objective F is lower semi-continuous at u.
Then u is a local optimal solution to the penalized problem{

min
x,y

1
ρ
F (x, y) + f (x, y)− V (x)

gt (x, y) ≤ 0, ∀ t ∈ T,
(15)

with ρ > 0 is the constant mentioned in (14).

Proof. The proof technique is exactly that of [9, Lemma 5].

4. A subdifferential estimate for the marginal function

Our main objective here is to obtain an estimate of the subdifferential of the value
function (11), and check when it can be locally Lipschitz continuous. Using a varia-
tional approach, the sensitivity analysis results established below are expressed via
the initial data of (2) and the set of active constraint multipliers (10).
It is worth mentioning that Lemma 3.2 and [18, Theorem 7] provide the basic tools to
prove the main result. Our forthcoming discussion relies essentially on the following
constraint qualification conditions, which are defined at a given point u = (x, y):
• The nonsmooth regular constraint qualification (RCQ):

N
(
u; gphG

)
= N̂

(
u; gphG

)
=

⋃
υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt (u)
]
.

• The nonsmooth limiting constraint qualification (LCQ):

N
(
u; gphG

)
⊂

⋃
υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt (u)
]
.

One way to formulate sufficient conditions for regular constraint qualification and
limiting constraint qualification conditions is to use of the Farkas-Minkowski con-
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straint qualification (FMCQ). Note that the latter constraint qualification was first
introduced by Dinh, Mordukhovich and Nghia in [8]. Here, we introduce the FMCQ
for (2).

Definition 4.1. Assume that for all t ∈ T , the constraint gt in the problem (2) is
proper, lower semi-continuous, and convex. We say that the parametric problem (2)
satisfies FMCQ if

cone
(⋃

t∈T

epi g∗t
)

is closed in Rn × Rm × R with g∗t is the conjugate function of gt for all t ∈ T .

We now give a sufficient condition for the regular constraint qualification condition.

Proposition 4.2. Let u = (x, y) be an optimal solution of (1) such that (1) is
partially calm at u and the lower-level constraints gt, t ∈ T are proper, convex and
lower semi-continuous. If FMCQ is valid for the parametric problem (2), then RCQ
holds at u. The converse implication also holds if dom σgphG ⊆ im ∂δgphG.

Proof. Since, gt, t ∈ T are convex and the graph of G is defined by

gphG =
{
(x, y) ∈ Rn × Rm : gt (x, y) ≤ 0, ∀ t ∈ T

}
,

we get from [14, Proposition 1.5] that

N
(
u; gphG

)
= N̂

(
u; gphG

)
. (16)

On the other hand, we derive from [8, Corollary 3.6] that, under FMCQ, we can
estimate the normal cone to gphG as follows

N
(
u; gphG

)
=

⋃
υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt (u)
]
. (17)

By combining (16) and (17), the first result of the proposition is deduced.
Conversely, suppose that RCQ holds at u and domσgphG ⊆ im∂δgphG. Then by [12,
Corollary 4.1.(ii)], we need to show only that

epi σgphG = cone
(⋃

t∈T

epi g∗t
)
. (18)

Let
(
(ξ1, ξ2), α

)
∈ epi σgphG. Since (0Rn×Rm , 0R) clearly belongs to the right-hand

side of (18), we assume without loss of generality that
(
(ξ1, ξ2), α

)
= (0Rn×Rm , 0R).

Now, since (ξ1, ξ2) ∈ domσgphG ⊆ im∂δgphG, there exists (x0, y0) ∈ gphG such that
(ξ1, ξ2) ∈ ∂δgphG(x0, y0) = N((x0, y0); gphG). The definition of RCQ implies that
(ξ1, ξ2) can be expressed as

(ξ1, ξ2) =
∑

t∈supp υ

υt(ξ
1
t , ξ

2
t )

for some υ ∈ Υ(x0, y0), (ξ
1
t , ξ

2
t ) ∈ ∂gt(x0, y0), and υt ≥ 0 for each t ∈ supp υ. Note

that, from the Young equality (6), we have, 〈(ξ1t , ξ2t ), (x0, y0)〉 = g∗t (ξ
1
t , ξ

2
t ) for each

t ∈ T because (ξ1t , ξ
2
t ) ∈ ∂gt(x0, y0) and gt(x0, y0) = 0.
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On the other hand, since
α ≥ 〈(ξ1, ξ2), (x0, y0)〉 =

∑
t∈supp υ

υt〈(ξ1t , ξ2t ), (x0, y0)〉 =
∑
t∈T

υt〈(ξ1t , ξ2t ), (x0, y0)〉,

there exists a set {αt : t ∈ T} of real numbers such that

α =
∑
t∈T

υtαt and g∗t (ξ
1
t , ξ

2
t ) = 〈(ξ1t , ξ2t ), (x0, y0)〉 ≤ αt for all t ∈ T.

This implies that
(
(ξ1t , ξ

2
t ), αt

)
∈ epi g∗t for each t and thus(

(ξ1, ξ2), α
)
∈ cone

(⋃
t∈T

epi g∗t
)
.

In consequence we obtain epi σgphG ⊆ cone
(⋃

t∈T

epi g∗t
)

. Since by [12, Remark 4.1]

we have epi σgphG ⊇ cone
(⋃

t∈T epi g∗t
)

, (18) is proved.

We note that the Farkas-Minkowski constraint qualification may not be verified even
if the regular constraint qualification condition holds at u as shown in the following
example.
Example 4.3. In the parametric problem (2) we consider that the objective func-
tion f : R× R2 → R and the constraints

gt : R× R2 → R, t ∈ T = { 1
n

: n = 1, 2, ...} ∪ {0, 2},

are defined respectively by

f(x, y) = (y1 − x)3 + (y2 − x)3 for all y = (y1, y2) ∈ R2 and x ∈ R,

gt(x, y) =

{ −ty1 − (1− t)y2 + x, t ∈ T \ {2},
y1 − y21 + y2 − 1− 4x, t = 2,

∀t ∈ T.

First, let us observe that according to [9, Corollary 3.6] FMCQ is not verified because
g2 is not convex. On the other hand, let x = 0. We have

G(x) = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0, y1 − y21 + y2 − 1 ≤ 0}

and M(x) := {y ∈ G(x) : V (x) = f(x, y)} = {(0, 0)}. Let y = (0, 0) ∈ M(x). It is
easy to see that
• for every t ∈ T , the function gt is differentiable,
• the functions (x, y, t) 7→ gt(x, y) and (x, y, t) 7→ ∇gt(x, y) are continuous,
• the function h(x, y) defined by h(x, y)(t) = gt(x, y) for each t ∈ T is continu-

ously differentiable at (x, y) according to [2, Proposition 2.174].
Since all assumption of [9, Theorem 3.2] are verified, then RCQ holds at (x, y).

Next we derive an upper estimate for the Fréchet subdifferential of the marginal func-
tion (11) at a given point x by using the basic subdifferential of the constraint map-
pings gt, t ∈ T , and the upper subdifferential of the lower-level function ∂̂+f (x, y),
which is supposed to be nonempty for some y of the argminimum set

S (x) = {y ∈ G (x) | V (x) = f (x, y)}. (19)
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Theorem 4.4. Suppose that V defined in (11) is finite at some x ∈ dom S, and
y ∈ S (x) with ∂̂+f (x, y) 6= ∅. If RCQ holds at u = (x, y), then

∂̂V (x) ⊂
{
x̃ ∈ Rn | (x̃, 0) ∈ ∂̂+f (x, y) +

⋃
υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt (u)
]}
. (20)

Proof. Let y ∈ S (x). For every fixed (α∗, β∗) ∈ ∂̂+f (x, y), we choose an arbitrary
subgradient x̃ ∈ ∂̂V (x). Then, by [18, Theorem 1] we get

x̃− α∗ ∈ D̂∗G (u) (β∗) .

Furthermore, we get from the definition of Fréchet coderivative that

x̃− α∗ ∈ D̂∗G (u) (β∗) ⇐⇒ (x̃− α∗,−β∗) ∈ N̂
(
u; gphG

)
. (21)

Since the RCQ holds at (x, y), the second inclusion in (21) is equivalent to

(x̃− α∗,−β∗) ∈
⋃

υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt(u)
]
.

Hence, we obtain the inclusion

(x̃, 0) ∈ (α∗, β∗) +
⋃

υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt(u)
]
.

Thus (20) holds true.

With the inner semicompactness/semicontinuity of S, we can establish verifiable
upper estimates for the basic and singular subdifferentials of V in (11). This result
is proved by Chuong, Huy and Yao in [3] only when the solution map S is inner-
semicontinous. The proof is given below in both cases for the convenience of the
reader.

Theorem 4.5. Assume that x ∈ dom S and f and gt, t ∈ T , are Lipschitz contin-
uous around (x, y).
(i) If S is V -inner semicompact at x and the LCQ holds at (x, y), for any y ∈

S (x), then one has the inclusions

∂V (x) ⊂
⋃

y∈S(x)

{
α∗∈Rn| (α∗, 0)∈∂f (x, y) +

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
, (22)

∂∞V (x) ⊂
⋃

y∈S(x)

{
α∗ ∈ Rn | (α∗, 0) ∈

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
. (23)

(ii) If S is V -inner semicontinuous at (x, y) ∈ dom S and the LCQ holds at (x, y),
then one has the inclusions

∂V (x) ⊂
{
α∗ ∈ Rn | (α∗, 0) ∈ ∂f (x, y) +

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
,

∂∞V (x) ⊂
{
α∗ ∈ Rn | (α∗, 0) ∈

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
.
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Proof. We will only prove (i) as (ii) can be deduced in a similar way. Since f is Lip-
schitz continuous around (x, y) and S is V -inner semicompact at x, then according
to [18, Theorem 7 (ii)] we get

∂V (x) ⊂
⋃

y∈S(x)

⋃
(x̃,ỹ)∈∂f(x,y)

{
x̃+D∗G (x, y) (ỹ)

}
.

In taking any α∗ ∈ ∂V (x) and applying the latter subdifferential description, we
can find y ∈ S (x) and (x̃, ỹ) ∈ ∂f (x, y) such that

α∗ − x̃ ∈ D∗G (x, y) (ỹ) .

The definition of the normal coderivative yields

(α∗ − x̃,−ỹ) ∈ N ((x, y) ; gphG) . (24)

Considering the satisfaction of LCQ at (x, y), we can see from (24) that

(α∗, 0) ∈ (x̃, ỹ) +
⋃

υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]
.

Hence, the relationship

(α∗, 0) ∈ ∂f (x, y) +
⋃

υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)

]

for some y ∈ S (x) holds true, which means (22) holds true as well. The inclusion (23)
can be easily shown owing to the observation that ∂∞f (x, y) = {0}, by employing
the same steps of proof used to prove (22).

Also of interest in this section is the Lipschitz continuity of V . It is shown in [18,
Example 1(i)] that the value function may not be Lipschitz continuous in the general
framework of (11). To address this issue, we use the singular subdifferential estimate
of V .

Theorem 4.6. Let (x, y) ∈ gph S.
(i) If S is inner semicompact at x, LCQ is valid at (x, y), for any y ∈ S (x), and⋃

y∈S(x)

{
α∗ ∈ Rn | (α∗, 0) ∈

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}

= {0}, (25)

then V is locally Lipschitz around x.
(ii) If S is inner semicontinuous at (x, y), LCQ is valid at (x, y), and{

α∗ ∈ Rn | (α∗, 0) ∈
⋃

υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}

= {0}, (26)

then V is locally Lipschitz around x.

Proof. We will just give the proof of (ii); the proof of (i) can be deduced in a similar
way. To justify the semicontinuity of V , pick any sequence xk converging to x. The
inner semicontinuity of S at (x, y) ensures the existence of a sequence of yk ∈ S (xk)
converging to y.
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Since V (xk) = f(xk, yk) for all k ∈ N, and owing to the continuity of f at (x, y),
then by passing to the limit as k → ∞ we get

lim inf
xk→x

V (xk) = f(x, y) = V (x)

Hence, V is semicontinuous at x.
Under the LCQ and the inner semicontinuity of S, Theorem 4.5 can be employed
to get an upper estimate for the singular subdifferential of V as follows

∂∞V (x) ⊂
{
α∗ ∈ Rn | (α∗, 0) ∈

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
.

Now, if (26) holds, then ∂∞V (x) = {0}. Hence combining this fact with the se-
quential normal epi-compactness property of V , we obtain from [14, Theorem 3.52]
that V is Lipschitz continuous around x.

5. Fuzzy/approximate necessary optimality conditions

In this and next section, we are mainly interested in the study of necessary optimality
conditions for semi-infinite bilevel programs defined in (1)-(2). As mentioned in
Section 2, using a suitable ”partial calmness” qualification assumption together with
the optimal value function of the lower level problem, we can reduce the fully bilevel
problem under consideration to a one-level optimization problem with infinitely
many constraints.
We begin in this section by providing a fuzzy/approximate necessary optimality con-
ditions for (1) using a variational approach. In particular, we employ the extremal
principle developed by Mordukhovich [13]. Before heading to that, let us set

C = gphG, V (x, y) = V (x) and F0 (x, y) = ρ−1F (x, y) + f (x, y)− V (x, y) ,

where ρ > 0 is the constant in (14). The following result is crucial to prove the next
theorem.
Proposition 5.1. Let u = (x, y) be an optimal solution of (1). Suppose that (1) is
partially calm at u with v = F (u), and let

Ω1 = C × (−∞, F (u)] and Ω2 = gph F0. (27)
Then, (u, v) is a local extremal point of {Ω1,Ω2}.

Proof. Let u be given such that all the conditions of the proposition hold true. From
Lemma 3.2 we see that u is a local minimizer to (15). Suppose by contradiction
that (u, v) is not a local extremal point of {Ω1,Ω2}. Hence, for every neighborhood
U of (u, v) there exists ϵ > 0 such that for all a ∈ BRn×Rm×R one has

(Ω1 + a) ∩ Ω2 ∩ U 6= ∅.

Take a =
(
0Rn×Rm ,− ϵ

2

)
∈ BRn×Rm×R. The latter relation gives (u, F0 (u)) ∈ U with

u ∈ C and F0 (u) ∈ F (u)− ϵ

2
− R+.

Consequently, F0 (u) < F (u), which denies the truth of u being a local optimal
solution of (15).
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Theorem 5.2. Let u = (x, y) be an optimal solution of (1) such that (1) is partially
calm at u with v = F (u). Assume that V is locally Lipschitz around x. Then, for
any ϵ > 0, there exist u0, u1, u2 ∈ u + ϵBRn×Rm, v1, v2 ∈]F (u) − ϵ, F (u) + ϵ[ and
β⋆
ϵ ∈ R+ \ {0} such that u1 ∈ C, v1 = F (u1), v2 = F0 (u2) and

0 ∈ ∂̂ (β⋆
ϵF0) (u0) + N̂ (u1, C) + ϵBRn×Rm .

Proof. Assume that u is an optimal solution of (1) and let v = F (u). Suppose
that (1) is partially calm at u. Then Lemma 3.2 implies that u is a local minimizer
to (15), and hence on the basis of Proposition 5.1, (u, v) is an extremal point of the
system (Ω1,Ω2) defined by (27). Given ϵ > 0, we choose ϵ′ so that

ϵ′ < min
{
ϵ

2
;

1

2 (5 + 3l)
;

ϵ

4 + 3l
;

ϵ

3 + 4l
;

1

2 (1 + l) (4 + 3l)

}
(28)

with l being the Lipschitz constant of F0 satisfying l ≤ kF + kf + kV , where, kF , kf ,
kV are Lipschitz constants of F , f and V , respectively.
Now, the extremal principle from [14, Theorem 2.10] ensures the existence of

u1, u2 ∈ u+ ϵ′BRn×Rm , v1, v2 ∈]F (u)− ϵ, F (u) + ϵ[

and (x̃, ỹ) ∈ Rn+m × R satisfying ‖ (x̃, ỹ) ‖= 1 such that u1 ∈ C, v1 ∈ (−∞, F (u)],
v2 = F0 (u2) and

(x̃, ỹ) ∈
(
N̂ ((u1, v1) ; Ω1) + ϵ′BRn+m×R

)⋂(
− N̂ ((u2, v2) ; Ω2) + ϵ′BRn+m×R

)
.

This implies that there exist

(α⋆
ϵ , β

⋆
ϵ ) ∈ N̂ ((u1, v1) ; Ω1) and (υ⋆, µ⋆) ∈ N̂ ((u2, v2) ; Ω2) (29)

such that (α⋆
ϵ , β

⋆
ϵ ) + ϵ′ (a⋆1, b

⋆
1) = (x̃, ỹ) = − (υ⋆, µ⋆) + ϵ′ (a⋆2, b

⋆
2) (30)

where, (a⋆1, b⋆1), (a⋆2, b⋆2) ∈ BRn+m×R.
On the one hand, we derive from [14, Proposition 1.2] that

N̂ ((u1, v1) ; Ω1) = N̂ (u1;C)× N̂ (v1; (−∞;F (u)]) . (31)

Hence, by (29), α⋆
ϵ ∈ N̂ (u1;C) and β⋆

ϵ ∈ N̂ (v1; (−∞;F (u)]). Furthermore, β⋆
ϵ ≥ 0.

On the other hand, since (υ⋆, µ⋆) ∈ N̂ ((u2, v2) ; Ω2), the definition of Fréchet’s
normal cone yields

〈υ⋆, u− u2〉+ 〈µ⋆, v − v2〉 − ϵ′ ‖ (u− u2, v − v2) ‖≤ 0.

for all (u, v) ∈ Ω2 = gph F0 sufficiently close to (u2, v2). Combining the latter
inequality with (30) and noting that v = F0 (u) and v2 = F0 (u2), we have

〈α⋆
ϵ , u− u2〉+ β⋆

ϵ (F0 (u)− F0 (u2)) + 3ϵ′ (1 + l) ‖ u− u2 ‖≥ 0

for each u sufficiently close to u2. Then, u2 minimizes locally the function

ψ (x) = 〈α⋆
ϵ , u− u2〉+ β⋆

ϵ (F0 (u)− F0 (u2)) + 3ϵ′ (1 + l) ‖ u− u2 ‖ .
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In applying the fuzzy sum rule [14, Theorem 2.33] to

ψ1 (x) = 〈α⋆
ϵ , u− u2〉+ 3ϵ′ (1 + l) ‖ u− u2 ‖ and ψ2 (x) = β⋆

ϵ (F0 (u)− F0 (u2))

and using [14, Proposition 1.107], we find u0 ∈ u2 + ϵ′BRn×Rm such that

0 ∈ α⋆
ϵ + ∂̂ (β⋆

ϵF0) (u0) + ϵ′max{4 + 3l; 3 + 4l}BRn×Rm . (32)

Hence, there exist ξ⋆ϵ ∈ ∂̂ (β⋆
ϵF0) (u0) and ϱ⋆ ∈ BRn×Rm such that

0 = α⋆
ϵ + ξ⋆ϵ + ϵ′ (4 + 3l) ϱ⋆

Since F0 is Lipschitz continuous around u, one has from [14, Proposition 1.85] that
‖ ξ⋆ϵ ‖≤ lβ⋆

ϵ . Hence
‖ α⋆

ϵ ‖≤ lβ⋆
ϵ + ϵ′ (4 + 3l) . (33)

Furthermore, considering the fact that ‖ (x̃, ỹ) ‖= 1, it follows from (30) that

‖ α⋆
ϵ ‖ +β⋆

ϵ > 1− ϵ′. (34)

In combining (33) with (34) while taking into account (28), we arrive at

β⋆
ϵ >

1

2 (1 + l)
> 0. (35)

Finally, the combination of (29), (31) and (32), while taking into account (28),
ensures the conclusion of our theorem.

In the next theorem we deduce from Theorem 5.2 a new KKT necessary optimality
conditions for (1) in terms of Fréchet subdifferentials.

Theorem 5.3. Let u = (x, y) be an optimal solution of (1) such that (1) is partially
calm at u. Suppose that V is locally Lipschitz near x and assume that the RCQ
holds near u. Then, for any ϵ > 0, there exist u1, u3, u4 = (x4, y4)∈ u + ϵBRn×Rm,
β⋆
ϵ ∈ R+ \ {0} and multipliers υ = (υt) ∈ RT

+ from the positive cone in (8) satisfying

0 ∈ β⋆
ϵ

(
ρ−1 ∂̂F (u3) + ∂̂f (u4)− ∂̂V (x4)× {0}

)
+

∑
t∈supp υ

υt∂gt (u1) + ϵBRn×Rm , (36)

υtgt (u1) = 0 ∀ t ∈ T, (37)

where ρ > 0 is the constant from (14).

Proof. Suppose that u=(x, y) satisfies the conditions of the theorem with v=F (u),
and let ϵ > 0. Theorem 5.2 gives us

u0, u1, u2 ∈ u+ ϵ
2
BRn×Rm , v1, v2 ∈]F (u)− ϵ

2
, F (u) + ϵ

2
[

and β⋆
ϵ ∈ R+ \ {0} with u1 ∈ C, v1 = F (u), v2 = F0 (u2) and

0 ∈ ∂̂ (β⋆
ϵF0) (u0) + N̂ (u1, C) +

ϵ

2
BRn×Rm . (38)
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The application of the fuzzy sum rule [14, Theorem 2.33] on ρ−1β⋆
ϵF and β⋆

ϵ

(
f − V

)
permits to find u3, u4 ∈ u0 +

ϵ
2
BRn×Rm such that

∂̂ (β⋆
ϵF0) (u0) ⊂ ∂̂

(
ρ−1β⋆

ϵF
)
(u3) + ∂̂

(
β⋆
ϵ f − β⋆

ϵV
)
(u4) +

ϵ

2
BRn×Rm . (39)

Observe by using the difference rule for regular subdifferentials (see (5)) that (39)
becomes

∂̂ (β⋆
ϵF0) (u0) ⊂ ∂̂

(
ρ−1β⋆

ϵF
)
(u3) + ∂̂ (β⋆

ϵ f) (u4)− ∂̂
(
β⋆
ϵV

)
(u4) +

ϵ

2
BRn×Rm . (40)

In combining (38) and (40) while noting the fact that

N̂ (u1;C) =
⋃

υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (u1)
]

(under RCQ), we see that

0 ∈ ∂̂
(
ρ−1β⋆

ϵF
)
(u3) + ∂̂ (β⋆

ϵ f) (u4)− ∂̂
(
β⋆
ϵV

)
(u4) +

∑
t∈supp υ

υt∂gt (u1) + ϵBRn×Rm

for some υ ∈ RT
+, with υtgt (u1) = 0 and u4 = (x4, y4). Considering the fact that

β∗
ϵ > 0, the latter inclusion implies the following one

0 ∈ β⋆
ϵ

(
ρ−1 ∂̂F (u3) + ∂̂f (u4)− ∂̂V (x4)× {0}

)
+

∑
t∈supp υ

υt∂gt (u1) + ϵBRn×Rm .

In conclusion, we obtain the optimality conditions (36)–(37).

Note that the Fréchet subdifferential can often be empty at individual points of
the domains even for simple nonconvex functions, for example, ϕ (x) = − | x | at
x = 0. However, we can overcome this difficulty by employing necessary optimality
conditions that are similar to those in Theorem 5.3. This is obtained from the upper
estimates for the basic subdifferential of the value function under suitable constraint
qualification as we will see in the next section.

6. Necessary optimality conditions using the basic subdifferentials

We focus here on necessary optimality conditions for the nonconvex bilevel semi-
infinite program (1) in terms of basic subdifferential, in a direct way under LCQ,
and this by assuming that the partial calmness is verified for (1). Suppose that the
set S in (19) is inner semicompact.

Theorem 6.1. Suppose that u = (x, y) is an optimal solution of (1) such that (1)
is partially calm at u, S is inner semicompact at x, LCQ is valid at (x, y) for any
y ∈ S (x), and (25) holds. Then there are scalars σs, γs = (γst ) ∈ R̃T

+, vectors
us ∈ Rn, ys ∈ S (x) , s = 1, · · · , n+ 1 and multipliers υ = (υt) ∈ R̃T

+, such that

( n+1∑
s=1

σsus, 0
)
∈ ρ−1∂F (u) + ∂f (u) +

∑
t∈supp υ

υt∂gt (u)
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∀s = 1, · · · , n+ 1 (us, 0) ∈ ∂f (u) +
∑

t∈supp γs

γst ∂gt (x, ys)

∀s = 1, · · · , n+ 1, ∀ t ∈ T υtgt (u) = γst gt (u) = 0 (41)

∀s = 1, · · · , n+ 1 σs ≥ 0,
n+1∑
s=1

σs = 1

where ρ > 0 is the constant from (14).

Proof. Let u verify the assumptions of the theorem. In picking any arbitrary num-
ber ϵ > 0 and applying Theorem 5.2, there exist elements u0, u1, u2 ∈ u+ ϵBRn×Rm ,
v1, v2 ∈]F (u) − ϵ, F (u) + ϵ[ and β⋆

ϵ ∈ R+ \ {0} such that u1 ∈ C, v1 = F (u1),
v2 = F0 (u2) and

0 ∈ ∂̂ (β⋆
ϵF0) (u0) + N̂ (u1, C) + ϵBRn×Rm .

By dividing (32) by β⋆
ϵ , we set

α̃⋆
ϵ =

α⋆
ϵ

β⋆
ϵ

∈ N̂ (u1;C) and β̃⋆
ϵ =

β⋆
ϵ

β⋆
ϵ

= 1 ∈ N̂
(
v1; v − R+

)
.

According to (33) and (35), taking into account (28), we can see that ‖ α̃⋆
ϵ ‖≤ 1+ l.

Hence, the sequences α̃⋆
ϵ and β̃⋆

ϵ are bounded and then they admit two converging
subsequences to α⋆ and β⋆. Consequently, by the definition of Mordukhovich normal
cone, we get

α⋆ ∈ N (u;C) and β⋆ ∈ N
(
v; v − R+

)
.

Now, using the Lipschitz property of F0, we can apply (32) to get ξ⋆ϵ ∈ ∂̂
(
β̃⋆
ϵF0

)
(u0)

and ϱ⋆ ∈ BRn×Rm such that

0 = α̃⋆
ϵ + ξ⋆ϵ + ϵϱ⋆, ‖ ξ⋆ϵ ‖≤ lβ̃⋆

ϵ

and
(
ξ⋆ϵ ,−β̃⋆

ϵ

)
∈ N̂ ((u0, F0 (u0)) ; gphF0)

while taking into account (28). Letting ϵ→ 0, we get the relation

(−α⋆,−β⋆) ∈ N ((u, F0 (u)) ; gphF0) ,

which means that −α⋆ ∈ ∂ (β⋆F0) (u) = β⋆∂ (F0) (u). Therefore

0 ∈ ∂ (F0) (u) +N (u;C) .

On the other hand, recalling the fact that

N ((x, y) ;C) ⊂
⋃

υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]

(under the LCQ regularity) and using the basic subdifferential sum rule, we find
υ ∈ R̃T

+ satisfying

0 ∈ ρ−1∂F (x, y) + ∂f (x, y) + ∂ (−V ) (x)× {0}+
∑

t∈supp υ

υt∂gt (x, y) (42)

and υtgt (x, y) = 0 for each t ∈ T . Since the convex property (7) yields

∂ (−V ) (x) ⊂ co ∂ (−V ) (x) = −co ∂V (x) , (43)
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we obtain from (42) the following

0 ∈ ρ−1∂F (x, y) + ∂f (x, y)− co ∂V (x)× {0}+
∑

t∈supp υ

υt∂gt (x, y) . (44)

Let us now recall that, according to (i) in Theorem 4.5, since S is inner semicompact
at x and LCQ holds at (x, y), for all y ∈ S (x), then we have an upper estimate of
the basic subdifferential of V as

∂V (x) ⊂
⋃

y∈S(x)

{
α∗∈Rn | (α∗, 0) ∈ ∂f (x, y) +

⋃
υ∈Υ(x,y)

[ ∑
t∈supp υ

υt∂gt (x, y)
]}
. (45)

Now, on the basis of the classical Carathéodory theorem, we obtain according to
(45) and the fact that u ∈ co ∂V (u) the existence of some scalars σs and vectors
γs ∈ Υ(x, ys) and us ∈ Rn, s = 1, · · · , n+ 1, such that

n+1∑
s=1

σs = 1, u =
n+1∑
s=1

σsus

∀s = 1, · · · , n+ 1 σs ≥ 0, (us, 0) ∈ ∂f (u) +
∑

t∈supp γs

γst ∂gt (x, ys) .

From (44), it follows that

( n+1∑
s=1

σsus, 0
)
∈ ρ−1∂F (x, y) + ∂f (x, y) +

∑
t∈supp υ

υt∂gt (x, y) .

Consequently, all the optimality conditions in (41) are fulfilled.

In the above theorem, when S is strongly inner semicontinuous, we get conditions for
(1) involving only the reference optimal solution u. Indeed, if S has a closed graph
and is inner semicompact at x such that S (x) = {y}, then it is inner semicontinuous
at u.

Theorem 6.2. Suppose that u = (x, y) is an optimal solution of (1) such that (1)
is partially calm at u, S is inner semicontinuous at u, LCQ is valid at u, and (26)
holds. Then there are scalars σs, γs = (υst ) ∈ R̃T

+ from the positive cone in (8),
vectors us ∈ Rn, s = 1, · · · , n+ 1 and multipliers υ = (υt) ∈ R̃T

+ satisfying( n+1∑
s=1

σsus, 0
)
∈ ρ−1∂F (u) + ∂f (u) +

∑
t∈supp υ

υt∂gt (u)

∀s = 1, · · · , n+ 1, (us, 0) ∈ ∂f (u) +
∑

t∈supp γ

γst ∂gt (u)

∀s = 1, · · · , n+ 1, ∀t ∈ T, υtgt (u) = γst gt (u) = 0

∀s = 1, · · · , n+ 1, σs ≥ 0,
n+1∑
s=1

σs = 1

where ρ > 0 is the constant from (14).
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Proof. As in the previous theorem, it follows from Theorem 4.6 that V is Lipschitz
near x̄. Furthermore, under the inner semicontinuity of S and the LCQ, Theorem
4.5 ensures the truth of the following upper estimate for the subdifferential of V

∂V (x) ⊂
{
α∗ ∈ Rn | (α∗, 0) ∈ ∂f (u) +

⋃
υ∈Υ(u)

[ ∑
t∈supp υ

υt∂gt (u)
]}
. (46)

We then combine (42), (43) and (46) to conclude.
In case the strict differentiability of all functions involved in (1)-(2) holds instead of
the local Lipschitz property, we obtain the following result.

Corollary 6.3. Let u = (x, y) be an optimal solution of (1) such that (1) is partially
calm at u, where F , f and gt, t ∈ T are all strict differentiable. Suppose that S
is inner semicontinuous at u, LCQ is valid at u, and (26) holds. Then there are
scalars σs, multipliers υ = (υt) ∈ R̃T

+, γs = (γst ) ∈ R̃T
+ from the positive cone in (8)

and vectors us ∈ Rn, s = 1, · · · , n+ 1 such that
n+1∑
s=1

σsus ∈ ρ−1∇xF (u) +∇xf (u) +
∑

t∈supp υ

υt∇xgt (u)

ρ−1∇yF (u) +∇yf (u) +
∑

t∈supp υ

υt∇ygt (u) = 0

∀s = 1, · · · , n+ 1, us = ∇xf (u) +
∑

t∈supp γs

γst∇xgt (u)

∀s = 1, · · · , n+ 1, ∇yf (u) +
∑

t∈supp γs

γst∇ygt (u) = 0

∀s = 1, · · · , n+ 1, ∀t ∈ T, υtgt (u) = γst gt (u) = 0

∀s = 1, · · · , n+ 1, σs ≥ 0,
n+1∑
s=1

σs = 1

where ρ > 0 is the constant from (14).

Finally, we present the following result inspired from Theorem 6.2 which treats the
case of convexity of all the functions involved in (1)-(2).

Corollary 6.4. Let u = (x, y) be an optimal solution of (1) such that (1) is partially
calm at u, where F , f and gt, t ∈ T are all convex. Suppose that S is inner semi-
continuous at u, LCQ is valid at u, and (26) holds. Then there exist υ = (υt) ∈ R̃T

+

and γ = (γt) ∈ R̃T
+ satisfying

0 ∈ ρ−1∂xF (u) + [∂xf (u)− ∂xf (u)] +
∑
t∈T

(υt − γt) ∂xgt (u) ,

0 ∈ ρ−1∂yF (u) + ∂xf (y, y) +
∑
t∈T

υt∂ygt (u) ,

0 ∈ ∂xf (y, y) +
∑
t∈T

γt∂ygt (u) ,

υtgt (u) = γtgt (u) = 0 ∀t ∈ T,

where ρ > 0 is the constant from (14).
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Proof. First, notice V is locally Lipschitz continuous on the basis of Theorem 4.5.
Moreover, Theorem 8 from [9] ensures the convexity of the value function owing to
the convexity of the initial functions of this problem.
On the other hand, considering the equality (42), it follows from (46) that there
exist vectors υ = (υt) , γ (γt) ∈ R̃T

+ and α ∈ Rn with υtgt (u) = 0 for all t ∈ supp υ
and γtgt (u) = 0 for all t ∈ supp γ such that

(α, 0)∈ρ−1 (∂xF (u)×∂yF (u))+∂xf (u)×∂yf (u) +
∑

t∈supp υ

υt∂xgt (u)×∂ygt (y, y), (47)

α ∈ ∂xf (u) +
∑

t∈supp γ

γt∂xgt (u) (48)

and 0 ∈ ∂yf (u) +
∑

t∈supp γ

γt∂ygt (y, y)

while taking into account the following partial differential relationships

∂F (u) ⊂ ∂xF (u)× ∂yF (u) , ∂f (u) ⊂ ∂xf (u)× ∂yf (u)

and ∂gt (u) ⊂ ∂xgt (u)× ∂ygt (u) .

The combination of (47) and (48) gives the result.

In the following example we show that Theorem 6.1 gains in interest if we realize
that the follower’s objective and constraints functions are not required to be convex
as contrary to the results from [9] that require convexity.

Example 6.5. Assume that the upper and lower levels objectives are given by

F (x, y) = |x|+ |y| and f(x, y) = −|x| − y2 + y.

The constraints in the lower level are

g1(x, y) = y − 1, gt(x, y) =

{ −1
t
y, y < 0,

−y, y ≥ 0,
∀ t ∈ T ∗ = {2, 3, ...}.

The unique global optimum of the multiobjective bilevel program (1) is u = (0, 0).
It is easy to check that the functions F , f and gt, t ∈ T = {1} ∪ T ∗ = N \ {0},
are locally Lipschitz at u but f and gt, t ∈ T , are not convex. Note also that the
optimal value function V (x) = −|x| is nonconvex too.
The set S(x) of optimal solutions to (2) is S(x) = {0, 1}, which is inner semicompact
at 0. The basic/limiting/Mordukhovich (lower) subdifferentials of F , f , g1 and
gt, t ∈ T are given by

∂F (u) = [−1, 1]× [−1, 1], ∂f(u) = co {(−1, 1), (1, 1)} ,

∂g1(u) = ∂g1(0, 1) = {(0, 1)} ,

∂gt(u) = co
{
(0,−1), (0,−1

t
)
}

∀ t ∈ T ∗ ∂gt(0, 1) = {(0,−1)} .
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By simple calculations we show that gphG = R× [0, 1],

Υ(0, 0) = {υ ∈ R̃N
+ : υ1 = 0}, Υ(0, 1) = {υ ∈ R̃N

+ : υt = 0, ∀t ∈ T ∗},

N(u, gphG) = {0} × R− ⊆
⋃

υ∈Υ(0,0)

[ ∑
t∈T∗

υt∂gt(u)
]
= {0} × R−

and
N((0, 1), gphG) = {0} × R+ ⊆

⋃
υ∈Υ(0,1)

[
υ1∂g1(0, 1)

]
= {0} × R+.

Hence LCQ is valid at (0, y) for any y ∈ S(0) and (25) holds.
For ρ = 1, we can easily deduce that (1) is partially calm at u. Then for σ1 = σ2 =

1
2
,

u1 = u2 = −1, y1 = 0, y2 = 1, υ2 = γ12 = γ22 = 1, υt = γ1t = γ2t = 0, ∀t ∈ N \ {0, 2},
s ∈ {1, 2}, the conclusion of Theorem 6.1 hold true.

7. Conclusion

In this work, we have rewritten upper estimates of three recently developed subdiffer-
entials of the value functions using nonsmooth regular and limiting constraint qual-
ification, which are weaker than the existing Mangasarian-Fromovitz and Farkas-
Minkowski CQs. We also establish new first-order necessary optimality conditions
for bilevel semi-infinite programming problem when the involved functions are non-
convex. For future research, we can obtain similar results for the same problem we
studied using weaker subdifferentials such as tangential subdifferentials and direc-
tional convexificators.
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