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Abstract. The principal aim of this work is to find a simultaneous solution to two
distinct problems: the generalized mixed equilibrium inequalities (where the main oper-
ator is assumed to be monotone and uniformly continuous) and the fixed point problem
associated with nonexpansive semigroups in a real Hilbert space. We introduce an iner-tial
extragradient method featuring two-step inertial extrapolations. The global strong
convergence of the algorithm is rigorously demonstrated under standard constraints.
Finally, we provide numerical experiments that confirm the superior performance of our
approach.
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1 Introduction

Consider H, a real Hilbert space, equipped with the inner product (-,-) and the
induced norm || - ||. Let C' be a non-empty, closed, and convex subset of H. We also

consider two bifunctions 7,1 : C' x ' — R and a nonlincar mapping G : C' — H. The
generalized mixed equilibrium problem (GMEP) is formulated as finding an element
x € C such that

T(%?J)'i‘@/)(y’x) —Z[J(I‘,J?)+<G($),y—l‘> > 07 VyE C. (11)

The solution set for problem (1.1) will be denoted as GM EP (T, , G). The GMEP,
which has been extensively investigated in works like [10, 22, 25], offers a robust mathe-
matical structure. This framework successfully unifies and generalizes several challenges

fundamental to continuous optimization and variational analysis, including the simpler
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mixed equilibrium problem and the generalized equilibrium problem. Setting the func-
tions ¢ = 0 and G = 0 simplifies (1.1) to the classic equilibrium problem (EP), which
seeks to find x € C' such that

T(x,y) >0, VyeCd. (1.2)

We denote the solution set of (1.2) as EP(T). The concept of the equilibrium problem,
initially introduced by Ky Fan [21] and significantly expanded by Blum and Oetlli [2],
serves as an incredibly versatile tool for modeling a wide range of optimization
scenarios across both theoretical and applied disciplines. Next, we examine the fixed

point problem for a mapping M, which is defined as:
find x € C suchthat Mx = x. (1.3)

The fixed point set of M is denoted by F' (M ). Fixed point theory has captured signif-
icant attention and remains an active research frontier in modern mathematics due to its
diverse and far-reaching applications; seminal works include [3, 4, 5, 6, 7, 8, 9, 11,14, 15,
17, 23, 27, 33, 37, 38]. Recently, there has been considerable effort to devise iter-ative
solution procedures capable of approximating common points that simultaneously satisfy
both the generalized mixed equilibrium problem and the fixed point problem, as evidenced
by studies like [13, 18, 31, 34, 47].

The generalized system of modified variational inclusion problems (GSMVIP), in-
troduced by Kheawborisut and Kangtunyakarn [26] in 2021, consists of finding v € H

where

0e(N+By)v and 0€ (N + Bs)v (1.4)

and N : H — H is a mapping and By, By : H — 2% are set-valued mappings. Let I' the
solution set of problem (1.4).

A novel iterative scheme combining the inertial technique and the subgradient extragra-
dient method was recently developed by Husain and Asad [25]. Inspired by the works of
[22] and [26], this algorithm approximates common solutions to modified variational
inclusion problems and mixed equilibrium problems within real Hilbert space. Assume
that f : C' — H be a nonexpansive mapping and G : C — H be a L-Lipschitz continu-

ous and monotone mapping. Let the sequence {x,} be generated for any xq, z1,z € Hiyby

Wy, = Tp + Op(xh — Tpq),
U = S (wn — 1 G(wy)),
Zn = SZ;QQn(wn —1,G(vy)),
Tnt1 = AU + N 2n + Yo f (wn)
where QQ,, = {x € H : (w, — rG(wy) — Un, x — v,) > 1, T(vy, )} and {A\,}, {n.},
{7} € (0,1) with A\, + 7, + 7, = 1,7, < %,Qn € [0,1). They demonstrated that
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the sequence {z,} converges strongly to ¢ = Poymepray,cynre, provided that certain
conditions on the parameters are met.

Observe that the convergence analysis for the algorithms proposed in [22] and [25]
relies on the Lipschitz continuity of the mapping G. This strong regularity condition
limits the practical scope of these algorithms. Our core motivation is to overcome this
limitation by designing a simplified methodology that operates without the Lipschitz
continuity requirement, thereby making the method more broadly applicable and less
dependent on the specific operator properties. Driven by the aforementioned body
of research and a thorough review of related literature, we put forward an inertial
extragradient scheme employing double extrapolation steps. This scheme is designed
to compute the common solution shared by the generalized mixed equilibrium problem
(1.1) (for operators that are monotone and uniformly continuous) and the fixed point
problem (1.3) of a nonexpansive mapping. A key differentiator is that, unlike previous
approaches that often necessitate weak sequential continuity, our convergence proof only
demands the underlying operator for (1.1) to be monotone and uniformly continuous.
Our algorithm further distinguishes itself from standard methods that rely on time-
consuming Armijo-type line search routines by utilizing a straightforward, self step size
rule. This novel rule adaptively adjusts the step size, producing a sequence that is
not restricted to being monotonically increasing or decreasing. Crucially, our technique
provides a closed-form step size update, eliminating the need for both complicated search
procedures and prior knowledge of the Lipschitz constant of G. Finally, the chosen step

size strategy incorporates elements found in successful existing methods [28, 32, 41, 42].
2 Preliminaries

We commence with an overview of fundamental definitions and established mathe-
matical results. These concepts will form the analytical groundwork for our subsequent
investigation of the proposed method.

Assumption 2.1 /2] Let T : C x C — R and ¢ : C x C — R be two bifunctions
satisfying the following properties:

(A1) T(u,u) =0,YVu € C,
(A2) T is monotone, e, T (u, v) + T (v, w) < 0, Yu, v € C;
(As) For each u,v,w € C,limy_o T(tw + (1 — t)u,v) < T(u,v);

(Ay) the bifunction T(-,-) is weakly continuous. For each u € C,v — T(u,v) is convex

and lower semicontinuous.
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(B1) the bifunction (-,-) is weakly continuous and the bifunction (-,v) is conver,
Yv e C;

(Bz2) the bifunction v is generalized skew-symmetric, i.e.,
Y(u,u) — P(u,v) +P(v,v) — (v, w) + Y (w,w) — Pp(w,u) > 0,Vu,v,w € C.
The bifunction 7" : C' x C' — R is said to be 2-monotone if
T(u,v) +T(v,w) +T(w,u) <0,Vu,v,w € C. (2.1)

Lemma 2.1 [20] Assume that T,¢ : C x C — R be two bifunctions satisfying As-
sumption 2.1. For r > 0 and Yu € H, the operator S : H — C is uniquely defined
by:

ST (u) = {w € C:T(w,v)+¢Y(v,w) —¢(w,w)+%<v—w,w—u> > 0,Vv € C’}. (2.2)

Then the following properties hold:
(i) ST is non-empty and single-valued;
(ii) ST is firmly nonexpansive, i.e.,
157 (u) = SP()II* < (S7 (u) = 57 (v),u — v),Yu,v € H;
(111) The fized point set of ST coincides with the solution set of the Equilibrium Problem.:
F(S}) = EP(T);
(iv) The solution set EP(T) is closed and convet.

Remark 2.1 Applying the definition of ST immediately leads to the inequality:

TS (), v) + (0, ST (w)) — (ST (). ST (w) + (v — ST (w), ST (w) —u) > 0,¥v € C

,
By algebraic manipulation and using the identity 2(a,b) = |la]|* + ||b||* — ||la — b]|?, we
deriwe the useful non-expansivity relation:
lo = ST @* < v —wull* = 1S (u) = ul?
+2r (T(STT(U)? V) + (v, 5 (u) — (5] (w), Sf(U)))Nv € C.
(2.3)
Lemma 2.2 [30] Opial’s Condition: Every Hilbert space satisfies this property, meaning
that for any sequence {x,} in the space that converges weakly (x, — x), the following
strict inequality holds:
lim inf ||z, — 2¢|| < lim inf ||z, — y|| (2.4)
n—oo n—oo

for all points y in the space such that y # x,.
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Lemma 2.3 [46] Uniform continuity of a function G on a convex domain is equivalent
to the following: for every o > 0, there exists a finite constant L such that for all points
a and b in the domain, the inequality ||G(a) — G(b)|| < L|la — b|| + o holds.

Lemma 2.4 [40] Let {¢,} and {w,} be two non-negative real sequences satisfying the
recurrence relation:
Cni1 < Cp+Wyp, VYn>1.

If the sum of the error terms is finite (> - w, < 00), then the sequence {c,} converges

to a limit (lim ¢, exists).
n—o0

Lemma 2.5 [35] Let {c,} be a positive real sequence, {w,} be a sequence in (0,1) such
that i w, = 0o and Y, is a sequence of real numbers. If the sequence satisfies the
inequna:l;ty:

Cnr1 < (1 —wp)e, +wpdy, VYn > 1.
and if imsup,,_,. U,, < 0 for all subsequences {c,, } of {c.} that satisfy the condition

li]zn inf(cp, 41 — ¢n,,) = 0.Then, the sequence converges strongly to zero (lim ¢, =0).
—00 n—oo

Lemma 2.6 [24] Let H be a real Hilbert space and K be a nonempty closed convex
subset of H. Let M : C' — C be a nonexpansive mapping with a non-empty fixed point
set (Fiz(M )# (). Then the mapping I —M is demiclosed at 0. That is, for any sequence
{z,} in C such that:

(1) The sequence converges weakly: x, — x, and
(2) The difference converges strongly to zero: {(I — M)z,} — 0,
it follows that x 1s a fized point: (I — M)z =0 , or equivalently, v € Fix(M ).

Finally, we utilize the following standard algebraic relations and inequalities applicable

in Hilbert spaces.
(1)
|z + v]|* < ||=]]* + 2(v, z + v), Vo, v € H. (2.5)
(ii) For each vy, - -, v, € H and coefficients 41, - -, d,, € [0,1] with >_7" 6; = 1, the

following identity holds (often used for convex combinations):

16101 4 -+« + Gmom|” =D illvill> = D id5llei — ;> (2.6)
=1

1<i<j<m
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3 Main result

Consider two bifunctions, 7" and v, defined on C' x C' to R, which are assumed
to satisfy Assumption 2.1. Let h : H — H be a contraction mapping with contraction
factor k € [0,1). Additionally, let M, A, and D be nonexpansive mappings from H to
H. We also define several positive sequences: {0,}, {8.}, {\n}, {€n}, {7} and {p,},
all of which satisfy the specified properties:

(a) dp + Bn + A = 1, and liminf,, B, A\, > 0;

(b) Let {e,} and {&,} be positive real sequences with the property that lim &

n—o0
&n

and 1}1_{20 5 = 0;

(¢) 6, € (0,1), lim 6, =0 and » 4, = oc;
n=1

(d) D) 7 < oo, lim p, = 0.

n=1

Under the standard assumptions:
(C1) The feasible set C' is nonempty closed and convex.

(C2) The operator G : H — H be monotone and uniformly continuous on H and
satisfies the following property: whenever {t,} € C,t, — t*, one has ||G(t*)|| <
lim inf ||G(t,)])-
n—oo

(C3) The bifunction 1 is generalized skew-symmetric and 7" is 2-monotone.
(C4) The solution set Q@ = F(M)(GMEP(T,y,G) # 0.

We introduce the following algorithm, designed to find the common solutions to problem
(1.1) and problem (1.3).
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Algorithm 3.1.

Step 0. Choose initial parameters and arbitrary starting points:
Given constants x € (0,1),7 € (0,2),m > 0,0 > 0, > 0. Select tg,t; € H be
arbitrary.
Use t,,_1, t,, for the current iteration.

Step 1. Determine adaptive extrapolation coefficients 6,, and w,, such that

6, min{0, —p—y} if tn # tu-y, (3.1)
0, otherwise.
And .
G e R S (3.2)
w, otherwise.

Step 2. Calculate
en =t + 0 (Alla) = Alta 1)),

%:%+w4mm—pmﬁy

and compute
Zp = STTn (cn — rnG(cn)),
if z,, = ¢, then stop, ¢, is a solution of (1.1). Else, do Step 3.

Step 3. Compute
Uy = SE;Qn (cn — rnG(zn))
such that

Q, = {:c € H:{ch—1,G(cn)—zn,x—2p) < 1T (20, ) +ro0(x, 25) —rnt) (2, zn)}
and ST, is obtained from (2.2) by setting C' = Q.
Step 4. Compute the next iterate
lnt1 = 5nh(dn) + ﬁnun =+ A71-]\4(1%)
Then, update the parameter r,,.

min { (’J";("G)é!";_z"”2+”“"_Z"”2) T+ Tn} if (G(cn) — G(2n), tn — 2n) >0,
Tnt1 = "

—G(2zn),Un—2n)

Tn+ Tn otherwise.

Increase n to n 4+ 1 and return to Step 1.
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In the case where v represents the indicator function of a closed convex set C' and
T = 0, the operator S;:’; is equivalent to Py [1]. Thus, Algorithm 3.1 simplifies to the

following scheme

Algorithm 3.2.

Step 0.

Step 1.

Step 2.

Step 3.

Step 4.

Choose initial parameters and arbitrary starting points:

Given constants y € (0,1),7 € (0,2),r1 > 0,0 > 0,0 > 0. Select to,t1 € H be
arbitrary.

Use t,,_1,t, for the current iteration.

Determine adaptive extrapolation coefficients 6,, and w,, such that

9, = min{f, =p g} it # L, (3.4)
0, otherwise.
And
S max{w, =yt i ta # ta, (3.5)
w, otherwise.
Calculate

and compute
z = Po (Cn - rnG(Cn))a
if z, = ¢, then stop, ¢, is a solution of (1.1). Else, do Step 3.

Compute
Up = PC,,, <Cn - T’nG(zn))
such that
C, = {z € H:{(c, —r,G(cy) — zp,x — 2z) < 0}.

Compute the next iterate

tni1 = Onh(dy) + Botin + An M (uy,).

Then, update the parameter r,,.

r — { min { (pn;—()g((!j;__é?!z;!:i;j;”2) Tn + Tn} if (G(cn) — G(20),un — 22) > 0,
n+l -—

Tn + Tn otherwise.
(3.6)

Increase n to n + 1 and return to Step 1.
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Remark 3.2 From condition (b) and (3.4) we have

0n||tn - tn—l” S €n and wn”tn - tn—l” S gn

then 9
and
. w"l _

Thus, there exist Ny > 0 and No > 0 such that

On

5—||tn — tn_1|| < Ny,Vn € N (39)
and

w'n,

2ty — ta ] < N, ¥n € N, (3.10)

For the proof of global convergence of our approach, we first state the necessary

lemmas.

Lemma 3.1 [10] Given that {r,} is defined by (3.6). Then, we have le rn = 1, where
r e [min (%,rl),rl + ZTn]

n=1
Remark 3.3 From Lemma 3.1 and condition (e) we have

lim (1 . M) —1—x>0, (3.11)

n—oo Tn+1

for sufficiently large n (i.e., for all n > ngy for some ny) we have 1 — (”%ﬁ)“ > 1_7’( > 0.

Lemma 3.2  Assume {t,} is the sequence produced by the Algorithm 3.1 and t* € Q.
The following tnequality holds

. . (Pn+ X)Tn (P + X)Tn
|l —t*11? < ||cp—t ||2—(1——)|Iun—zn||2—(1——)||zn—cn||2- (3.12)
Tn+1 Tn+1

Proof. It follows from (2.3) that

157 0, (en = raGzn) ) = 2

len = mnG(z) = N7 = llup — ¢ + 7,G(20) |12
+2r, T (U, t°) + 27, [0 (E, wp) — Y (Up, uy)]
llen — 117 = 2 (up — t*, G (20)) — [lun — call®

+2r, T (U, t°) + 2rp, [V (", wpn) — (U, uy)].

[ — 2

[N
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Since t* € GMEP(T, ¢, G), we obtain
T(t*, z,) + (G(t7), 2z — ) + U (2p, t7) — (t", ") > 0. (3.13)
and applying the property of monotonicity of G, we get

(G(zn),up —t*) = (G(zn) = Gt"), 20 — ) + (G(t"), 20, — t7) + (G(2n), Un — 2n)
> (G(t"),zn —t") + (G(20), U — 2n). (3.14)

From u, € @,, we have

(en —1mnG(Cn) — Znytn — 2n) < 1T (20, Un) + T (Un, 20) — T (20, 20).
Using (3.13), (3.14) and (3.15), we obtain
= U1 < e = 17 = 200 (4G, 20— )+ (Gz0), n = 220)) = [t = cal?

4200 T (1t 1) + 20 [, 1) — (2t )]
+or, (T(t*, 20) + (G(t), 20 — ) + (2, ) — 1/)(75*,15*))

_2<Cn - 7ﬁnG(Cn) — Zn, Up — Zn> + 2rn (T(Zru un) + w<un7 Zn) - w(zm Zn))
= llen = t1* = 2ra(G(20), tn = 20) — [[tn — 20[* = 120 — €all* = 2{ttn — 20, 20 — c0)

—2(c, = 1,G(cn) — Zp, Uy — 2p) + 21, <T(un, )+ T(t", z,) + T(zn, un))

21 (B0 ) = () + 6, 0) = 0t 20) s 20) = (1)
= |len— t*HZ — [Jun — Zn||2 — |l2n — Cn”2 + 2r,(G(cn) — G(20), Un — 2n)
+2r, (T(un, )+ T(t", z,) + T(2n, un)>

—2ry, (@b(t*» ) = (", un) + (Un, un) — V(Uny 20) + P (20, 20) — (20, t*)>

By invoking the 2-monotonicity of 7" and the generalized skew symmetry of v in the

above inequality, we have
|2, — t*HQ < llen — t*||2 — ||, — Zn||2 —|lzn — Cn”2 +21,(G(cn) — G(2n), Un — 25)- (3.15)
From (3.6), we get

”un - t*||2 < ||Cn - t*”Q - (1 - M) || un — Zn”2 - (1 - M) ”Zn - Cn”Q-
Tn41 T'nt1

we get the assertion of this lemma. O

Lemma 3.3  Consider the sequence {t,} resulting from Algorithm 3.1 and t* € €.
Then, we have ¥n > ng {t,} is bounded.
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Proof. Combining condition (a) and Lemma 3.2 yields

[t =71 = [[0nh(dn) + Butn + An M (un) — 7|
< Onlll(dn) = 71 + Bullun — 7| 4+ Anl| M (un) — ]|
< Onllh(dn) = ()| 4 6nll (") — t°| + Bullun — ]| + Anll M (un) — M (27)]]
< Onklldn — 7| + Onl[R(t") — ]| + (1 — 0n)[lun — 7]
< Onpklldy, — ]| + On||h (") — || + (1 — 6,)||cn — 7| (3.16)

Observe from (3.9), we have

len =21 = lltn + On(A(tn) — A(tn-1)) — 7|
* ‘971
<t = 1+ 60 (G2l =t )
< ltn = 7] + 6nIN:- (3.17)
Also, from (3.10), we have
ldn =[] = lltn + @n(D(tn) — D(tn-1)) — t*]|
* wn
< tw = £l + 80 (520 = taal)
< ltn — |l + 6 N2 (3.18)

Applying (3.17) and (3.18) in (3.16), we have

tnir — 7] < @—G—M%Hm—tM%HMM ﬁww4u—@WHw@m)

< (1 (1 B8 ) [t — 11 4 BB — £+ 8u(Ny + No)
= (1= (=08, ) [t — 7] + 0,1 — I L (N 4 N
< (1= =ma)max (|, — ¢, L= t1||_+k(N1 )

(3.19)

At — t*|| + (N7 + Nz)).

— max(||tn—t*||, 1%

We proceed by induction on n to conclude

h(t*) —t* Ny + N.
o — £ < ma (- oo, LT )

),VnZnO.

Hence {t,} is is bounded, we can immediately conclude that {c,},{z,}, {un}, {h(d,)}
and {M(u,)} are bounded. 0
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4 Convergence Analysis

We proceed with the strong convergence demonstration of the new method. A key
feature of this proof is its independence from the two-cases analysis frequently employed

in the literature to establish such convergence.

Theorem 4.1  Algorithm 3.1 produces a sequence {t,} which converges strongly to
some point t € Q, where t = Polh(1)].

Proof. Let t € . According to the definition of ¢,, we get

||Cn - EHQ < ||tn - t~||2 + ‘9721”% - Zfn—IHZ + 20n||tn - EHth - tn—1||

i 0, _ 0,
- ||tn - t||2 + 5n‘9n5_||tn - tn—1||2 + 25n”tn - t||5_7||tn - tn—lll
= |ltn —ElI” + 6nqn (4.1)
where
0, ~ On
qqn = Oplltn — taall 1t — toall + 2[[tn — U=t — taall-
O On
(4.2)
Also, from the definition of d,,, we obtain
”dn - £||2 < ”tn - EHZ =+ wi”t" - tn—1||2 + 2wn||tn - EHth - tn—1||
~ TWn, 11 Wn
- ”tn - t||2 + 5nwn5_||tn - tn—1||2 + 25nl|tn - t||5_||tn - tn—1||
= ”tn o E“Q + 5nppn (43)
where
Wn 71 %n
PP = @nllts — tn—1||6_||tn =t + 2|ltn — t||5_||tn — tn|-
n n
(4.4)

We can easily establish from (3.7) and (3.8) that

lim g¢, =0 and lim pp, = 0. (4.5)
n—oo n—oo
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Then from (2.6), Lemma 3.2, (4.1) and (4.3), we have

ltnss — 82 = 16ah(dn) + Buttn + A (ur) — ]

Sullh(dn) — U2 + Bullun — T + Aal| M (u) — ]2

Bl M () — |

S (1) = @)+ 1A — F1) + Bl — £

A M (1) =MD = Bl M (1) —

b (Rllds — 21+ 1) — 71)” + (1 = 8, — ]

Bl M () —

Sulldn = 11 + 85 (2l — TR = ]+ 11D = A1) + (1= 8 um — 111
Bl M () — w, |

Oull = I+ 80 (2l = ENIAE) = A1+ 10D = TI7) + (1= ) len — ]

(p" + X)Tn 2 (pn + X)rn 2
(1= 80) (1= 22 o = 2l = (1= 60) (1= S22 —

—BpAnl| M (un) — Un||2
b (Iltn = T2 + Suppn ) + 80 (2o = 2R — T + 1D) — 7)1

(1= 8 (It~ 217 + Buga) — (1= 6, (1 LYy e

Tn+1

IN

IN

IN

IN

IN

IN

=0 (1= Y e A ) —

Tn+1

IN

It = 012 + 6, (2o = EIAE) ~ £ + 12E) — 1 + ga + ppu)
(Pn + X)Tn 2 (Pn + X)Tn 2
—(1 = 8, (1= Py — = (1= 6,) (1 PR, —

n+1 rn+1

—BaAnl| M (un) — up||*. (4.6)
Assume that {||¢,, — #]|?} is a subsequence of {||t, — #|*} satisfying

lim inf <||tnk+1 — A2 = lltn, — £||2) > 0. (4.7)
k—o0

From (4.6), we obtain

(/On + X)Tn (pn =+ X)rn
(1 _57%)(1 - . k)“unk _an:||2+(1 _5nk)(1 - . k)”’znk _an’,||2
rnk—i—l rnk"']-

+/Bnlc)‘nk ||M(unk:) — Un, ”2
< Mt = 17 = Wi — 0 + 6 (20, — AN — 8l + 1A — H + g, + o2, )-
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By utilizing above inequality and (4.7), and since lim §,, = 0, we find that

n—00

. +xX)r +Xx)r
im sup (1= 0,,) (1= Loy ey 1=, (1 - B X e
k—o0 Tnp+1 Tnp+1

< tmsup (|, I = Wer = 7 + 6, (20, FAE) =+ 120~ 11 + ag, + 02 ))
—00

= —tliminf (|t 1 — 8 = tn, — 1)

< 0.

Combining the result from (3.11) with condition (a) yields
kh—>IEc ||unk - an” = 07 kh_>nolo ||an - an” = 07 kh—>IEo ||M(unk) o unk“ =0. (48)

It follows from (4.8) that

klim l|en, — un, || = 0. (4.9)
— 00

On the other hand, from (3.9), we have

||an - tnk“ = ||0nk (A(tnk) - A(tnk—l))H
< enk“tnk - tnk—1||
S (5nkN1-
Thus
lim [|cp, — tn ]| = 0. (4.10)
k—o0 )
Since

”u’nk - tnk” < ”unk - an” + ”an - tnk”

It follows from (4.9) and (4.10) that
klg{olo “unk - tnk” =0. (411)
Turning our attention back to the definition of ¢,, 11, we can deduce the following

”tnk-i-l - tnk“ < 67lk||h(dnk) - tnk“ + ﬁ"k”“’"k - tnk” + A"k“]v[(u"k) - t"k“
< 6nk||h‘(dnk) - tnk” + (/Bnk + )\nk)Hunk - tnk” + AnkHM(unk) - unkH

It follows from (4.8) and (4.11) that
k:lggo ||tnk+1 - tnk ” =0. (4'12)

Let {t,,} be subsequences of {t,}, we proceed to demonstrate that w,,(t,) C €2, where

wu(tn) = {t € H:t, — t}.
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The boundedness of {t,} guarantees that w,(t,) is nonempty. Selecting any £ € w,,(t,),
we can find a subsequence {t,,} of {t,} satisfying the weak convergence t,, — f as
k — oo.

Given that klim llen, — tn, |l = 0 implies ¢, — t as k — co. It remains to be shown that
—+00
te GMEP(T,¢,G). From z, = ST (¢, — r,G(cy)), we have

Tz, 1) + B2, 20) — $(2ms 20) + (G(Cn), y — ) + Ti@; oz — ) >0, VzeC

n

Applying the property of monotonicity of T, we get
1
10(33, Zn) - d}(zna Zn) + <G(Cn)7x - zn) + T__(x — ZnsRn — Cn> Z T(y: Zn)a VII S C
and

D@, 2n) — Y (2ngs 20) + (G(Cn)s @ — 2 ) + (& — 20y 2N > Tz, 2, ), V€ O

’ (4.13)
For any 0 < § <1 and 2 € H, let bs = dx + (1 — §)t, we have bs € H. Then from (4.13),
we obtain

<G(b5)7 b5 - an> > w(zn}w an) - ?,D(b(g, an) ~+ <G(b5)7 bs — an>
(G em) b5 = 2 = (b5 — 2y ) T (b 22,)
= w(znw an) - w(b& an) + <G(b5) - G(an)7 bs — an>

ng
an — an
+<G(an) - G(an), b5 - an> - <b5 - anv T—> + T(bé7 an)'

Nk

(4.14)

Due to uniform continuity of G and the fact that lim ||z, — ¢, || = 0 (see(4.8)), we
n—oo
obtain klim |G (zn,) — G(cn, )|l = 0. From the monotonicity of G, the weakly lower
—00

semicontinuity of ¥ and z,, — #, we conclude from (4.14) that
(G(bs),bs — &) = W(E. 1) — ¥(bs, 1) + T(bs, 1) (4.15)

Hence, from Assumption 2.1 and (4.15), we have

0= T'(bs, bs) + (b5, t) = (bs, ) < 6T (bs,x) + (1 — 0)T(bs, t) + db(w,8) + (1 = 8)1b(F, 1) — (bs,
= 5(T(bs,2) + (D) — (b3, D))
+(1= ) (T(bs, 1) + 0(E.5) = v(05,))

1
< 6(T(os, ) + (1) = 0(b5,D)) + (1= 3G (bs), — ), (4.16)

then T(bs, z) + 1 (z,t) — (bs, 1) + (1 — 0){(G(bs),x — ) > 0. As § — 04, it follows that

T(t,x) +¢(z,t) — (1) + (GE),z —t) >0, VzeCl,

9
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thus t € GM EP(T,+,G). Our next objective is to prove ¢ € F(M). Due the fact that

klim |tn, — tn, || = O (see(4.11)), we have u,, — t as k — co. Next, we can assert that
;—»00
Jttn, — MO < MJttn, — M ()| + 1M (un,) = MBI < N, — M (un,) + I, — 2.
It follows from (4.8) that
. . _ 7 < . . _ g .
liminf |, — M(D)|| < limin |u,, — 7|

Leveraging the Opial property of the Hilbert space H (as established in Lemma 2.2)),
we find that M(¢) = ¢, which in turn confirms that ¢ € F(M). Since t € w,(t,), it is
therefore established that w,,(t,) C . Our next step is to demonstrate that
lim sup(h(t) — ¢, tn, 11 —t) < 0.
k—o0
Consider the subsequence {tnk,j} of {t,, } that converges weakly to some ¢ € Q, and
which is chosen such that
lHm (h(f) — t,t,, —t) = limsup(h(t) —t,t,, — t).
J—0o0 7 k—oo

Given that the the subsequence {tnkj} converges weakly to ¢t € Q and ¢ = Pqo[h(t)], we
can deduce that

limsup(h(t) — &, tn, 1 — t) = limsup(h(f) — t,t,, —t) = (h(t) —t,t — 1) < 0. (4.17)
k—o00

k—o00

Using (2.5), we have

lmsr = T2 = || (o) = 1) + B (. = ) + A (M () =)

+%AMQ—BW

IA

60 (o) = 1) + Byt — D)+ A (M) — D[

+28,, (h(t) —t, tp, 11 — 1)

Sull(dn,) = B + By ot — E2 4 A, (1M (11, — M(D])
426, (h(E) — F,tyin — D)

< Sneklldn, — FI” 4 (1= 8 )ty — I + 260, (o(F) = 1 — ).
(4.18)

IA

Applying Lemma 3.2, (4.1), (4.3) and (4.18), we get
thk-i-l - 5”2 < (1 - (1 - k)5nk> ||tnk - EHZ + 5nk <kppnk + (1 - 6nk)ank> + 25nk<h(£) - E: tnk+1 - £>

~ n n Zh{{ —{,tn _E

) PP+ Qne | 2000 = bt = D)
_ @_@@wm—ﬂﬁ+m%( T Tk
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where o, = (1 — k)J,,,. Let ¢, = Zoatddn 2Ot 78 ince

1—k 1k
o0
E On, = 00, lim 6,, =0,
k—o0
np=1

It is clear that

o0
E Op, — 00, lim o,,, =0
K ’k—>oo Tk

nk=1

and from (4.5), (4.17), we obtain

lim sup ¢, < 0.

k—o00

Thus, condition (4.7) ensures that all requirements of Lemma 2.5 are met. This allows
us to deduce that lim |[|t, — £||* = 0. We immediately have lim ||¢,, — || = 0, which by
n—oo n—oo

definition means t, converges strongly to ¢. The proof is now complete. O

5 Numerical examples

In this section, we present numerical experiments to illustrate the convergence of
our proposed algorithm. Furthermore, by setting v» = 0 and 7" = 0, we compare our
method against related methods found in the literature.

The parameters utilized in all subsequent numerical experiments were selected as follows:

e In our approach, we use r; = 0.35,x = 04,0 = 0.65,w = 0.22, 7, = W7 €p =
T, en = |zn — cnl|-

For the method proposed by Yang [49], A\; = 0.8, 1 = 0.9,6,, = 0.4, ¢,, = ||w,, — yn]|-

For the method proposed by Shehu et al. [36], \,, = 0.7, 4 = 0.9,6,, = 0.4, 71 =
0.8,e, = ||wn - yn“

For the method proposed by Thong et al. [43], \,, = 0.8, 4 = 0.9,v,, = 0.4, 77 =
0.8,e, = ||wn - yn“

Example 5.1: Consider the affine operator G : R" — R™ defined as G(z) = Bz + q,
with ¢ € R"®. The matrix B is constructed as B = NTN + U + D, where D is a
non-negative diagonal matrix, U is skew-symmetric matrix, and N € R"*"”. Note
that the structure of B ensures its positive definiteness. The feasible set is defined

as C ={r e R"| -5 < x; <5,i=1,...,n}. Ideally, G is monotone and uniformly
continuous.
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The convergence of the algorithms in [49] and [43] relies on the mapping G being mono-

tone and L-Lipschitz continuous with L = ||B|.

In our experiments, we set g to the zero vector, while the entries of N, U, and D are gen-

erated randomly. The initial values t; =

ones(n,1),to = 2t; and the stopping criterion

is defined as e,, < 107%. Table 5.1 presents the number of iterations (denoted as No. It.)

and the computational time for different problem dimensions. The experimental results,

including a comparison of the proposed method to methods in [36],

detailed in Table 5.1.

Table 5.1:

Numerical results for Example 5.1

[43] and [49], are

The method in [49] | The method in [36] | The method in [43] | The proposed method

n No. It. CPU(Sec.) | No. It. CPU(Sec.) | No. It. CPU(Sec.) | No. Tt. CPU(Sec.)

n =10 274 2.996 | 262 2.829 196 2.067 | 125 1.322
n =20 768 9.338 | 737 8.055 554 5.701 | 336 3.481
n=30| 1021 12.689 | 991 11.754 764 10.051 | 385 4.628
n=2>50| 1334 17.584 | 1320 15.954 | 1059 13.114 | 388 5.032

Convergence of algorithmes
T T T T T

Error ey,

T T
—+— The method in [48]
—¥— The method in [35]
—>— The method in [42]
—>¢— The proposed method | 7

L
20

L L L L
30 40 50 60
NumberofIterations

L
70

L
80

Figure 5.1: n =5

Example 5.2:

product (z,y) =
C' is defined as the unit ball in H:

100

Error e,

Convergence of algorithmes
T T T

T T
—+— The method in [48]
—¥— The method in [35]
—>— The method in [42]
—>— The proposed method

L L
200 300
NumberofIterations

L L L L
400 500 600 700

Figure 5.2: n = 20

800

Let H be the Hilbert space L?([0, 1]) equipped with the standard inner

fo 2(t)y(t) dt and the induced norm ||z|| =

C = {z e L2(0,1]) :

Let G : H — H be the operator defined by:

G(z)(t) =

|l < 1}.

/01 (x(t) - E(t,s)f(x(s))) ds + n(t),

v/ (x,z). The feasible set
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where FE, f, and n are given functions defined as follows

2tseltts) 2tel

E(t,s) = a1 f(x) = cosx, n(t) = PV

One can easily show that GG is monotone and L-Lipschitz continuous with constant L = 1.
The initial values ¢; = to = sin(x) and the stopping criterion is defined as e, < 107%.
This example is studied in [45]. Table 5.2 reports the results of this experiment, to
assess the efficiency of our algorithm, we compare it with the methods found in [36],
[43] and [49].

Table 5.2: Numerical results for Example 5.2

The method in [49] | The method in [36] | The method in [43] | The proposed method

n No. Tt. CPU(Sec.) | No. It. CPU(Sec.) | No. TIt. CPU(Sec.) | No. It. CPU(Sec.)

n =50 48 0.994 | 36 0.211 29 0.097 | 19 0.078
n =100 42 3.092 | 37 1.232 30 0.287| 19 0.179
n = 150 48 6.507 | 37 2.124 30 0.299 | 19 0.125
n = 200 48 14.361 | 36 3.425 31 0.563 | 19 0.365

T T T T
—+— The method in [48]
—#—— The method in [35]
—>— The method in [42]
—>— The proposed method

L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
Numbero fIterations

Figure 5.3: n = 150

Remark 5.4 The results displayed in Figures 5.1-5.3 and Tables 5.1-5.2 confirm the
efficiency of our approach.
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