A Hybrid Differential Game with Switching Thermostatic-Type Dynamics and Costs
Keywords:
Differential games, hybrid systems, switching, exit costs, Hamilton-Jacobi-Isaacs equations, viscosity solutions, non-anticipating strategies, delayed thermostat.Abstract
We consider an infinite horizon zero-sum differential game where the dynamics of each player and the running costs depend on the evolution of some discrete (switching) variables. In particular, such switching variables evolve according to the switching law of a so-called thermostatic delayed relay, applied to the players’ states. We first address the problem of the continuity of both lower and upper value function. Then, by a suitable representation of the problem as a coupling of several exit-time differential games, we characterize those value functions as, respectively, the unique solution of a coupling of several Dirichlet problems for Hamilton-Jacobi-Isaacs
equations. The concept of viscosity solutions and a suitable definition of boundary conditions in the viscosity sense are used in the paper.
Downloads
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

