Mild and Weak Solutions of Mean Field Game Problems for Linear Control Systems
Keywords:
Mean field games, mean field games equilibrium, semiconcave estimates, control systems.Abstract
The aim of this paper is to study first order Mean field games subject to a linear controlled dynamics on R d . For this kind of problems, we define Nash equilibria (called Mean Field Games equilibria), as Borel probability measures on the space of admissible trajectories, and mild solutions as solutions associated with such equilibria. Moreover, we prove the existence and uniqueness of mild solutions and we study their regularity: we prove Hölder regularity of Mean Field Games equilibria and fractional semiconcavity for the value function of the underlying optimal control problem. Finally, we address the PDEs system associated with the Mean Field Games problem and we prove that the class of mild solutions coincides with a suitable class of weak solutions.
Downloads
Downloads
Published
Issue
Section
License
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

